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An Optimization Framework for the Design of Piezoelectric AFM Cantilevers

Steven Ian Moore∗, Michael G. Ruppert, Yuen Kuan Yong

School of Electrical Engineering and Computing, The University of Newcastle, Callaghan, NSW 2308, Australia

Abstract

To facilitate further miniaturization of atomic force microscopy (AFM) cantilevers and to eliminate the standard optical beam
deflection sensor, integrated piezoelectric actuation and sensing on the chip level is a promising option. This article presents a
topology optimization method for dynamic mode AFM cantilevers that maximizes the sensitivity of an integrated piezoelectric sen-
sor under stiffness and resonance frequency constraints. Included in the formulation is a new material model C-SIMP (connectivity
and solid isotropic material with penalization) that extends the SIMP model to explicitly include the penalization of unconnected
structures. Example cantilever designs demonstrate the potential of the topology optimization method. The results show, firstly,
the C-SIMP material model significantly reduces connectivity issues and, secondly, arbitrary cantilever topologies can produce
increases in sensor sensitivity or resonance frequency compared to a rectangular topology.

Keywords: Atomic Force Microscopy, Topology Optimization, Piezoelectric Cantilevers, Connectivity Penalization, Sensitivity
Analysis, Microsystems

1. Introduction

1.1. Contributions to AFM Cantilever Design
Atomic force microscopy (AFM) [1] is a pioneering tech-

nology in the nanotechnology field which has provided a tech-
nological basis for countless methods and applications on the
characterization and manipulation of matter on the nanoscale.
AFM employs a sharp tip at the end of a microfabricated can-
tilever to interrogate the surface of a sample. When operated in
contact mode, the force exerted by the cantilever on the surface
can lead to sample damage, particularly for soft biological sam-
ples. Dynamic mode AFM alleviates this issues by oscillating
the cantilever at its resonance frequency, impacting the sample
only once per cycle which greatly reduces lateral friction forces
[2].

High performance dynamic mode AFM cantilevers are char-
acterized by a high resonance frequency and high sensor sensi-
tivity [3]. A high resonance frequency leads to reduced imaging
times and reduced sample damage during transients which, for
example, facilitates imaging of dynamic biological processes
[4]. High sensor sensitivity is a factor in increased image res-
olution [5]. On the other hand, the stiffness of the cantilever
needs to be constrained depending on the sample to be im-
aged [6]. The development of an optimal mechanical design
approach to optimize and trade-off between sensor sensitivity,
stiffness, and resonance frequency motivates this work.

Topology optimization [7] has been utilized to design dy-
namic mode AFM cantilevers with optimal characteristics.
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When considering sensor sensitivity, designs analyze the re-
sponse of the optical beam deflection (OBD) method [8] which
is the de-facto standard sensor in AFM. The design method pre-
sented in the seminal work by Pedersen [9] uses optimization
to maximize sensor sensitivity with a constraint on frequency
and stiffness, and alternatively, Li et al. [3] uses optimization
to maximize a combination of resonance frequency and sen-
sor sensitivity. Other applications of topology optimization in
AFM aim to enhance cantilevers for multi-frequency AFM [10]
by placing higher-order resonances at integer multiples of the
fundamental frequency as to naturally amplify harmonics gen-
erated while imaging [11–16].

With all of these optimized designs, only the OBD method
is considered for sensing. However the full potential of AFM
cantilevers is expected to be achieved by further miniaturization
and down-scaling which inevitably renders the OBD sensor in-
feasible due to limitations in the achievable laser spot size. Ad-
ditionally, combined AFM/STM high-resolution imaging [17]
requires a small footprint and doesn’t allow for optical sensing.
The only way to resolve this is to use integrated transduction
based on piezoresistive or piezoelectric effect [5, 18–20].

This work formulates a topology optimization method to de-
sign a piezoelectric AFM cantilever for dynamic mode AFM.
The optimization problem maximizes the charge per unit dis-
tance of tip deflection of the piezoelectric sensor under reso-
nance frequency and dynamic stiffness constraints. The article
outlines the finite element modeling of a laminate piezoelec-
tric structure and the details required to solve the optimization
problem robustly. The resulting cantilevers show that the topol-
ogy optimization method produces designs with improvements
in sensor sensitivity or resonance frequency compared to rect-
angular cantilevers. However, the search for optimal designs
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is constrained by the dimensions of the design space which fix
the length of the cantilever and limit the maximum width of the
structure.

1.2. Contributions to Topology Optimization

Numerous optimized piezoelectric structures follow a con-
ventional approach of discretizing the design space using the
finite element (FE) method [21–28]. Not only is the FE method
used for analysis of the structure, the optimization design vari-
ables set the material properties of each element. This leads to
a discrete binary problem where a design variable of 1 indicates
a solid element, a variable of 0 indicates a void element. How-
ever, the referenced works utilize continuous design variables
to avoid discrete optimization formulations. This allows for the
utilization of gradient based algorithms to solve the optimiza-
tion problem, such as the method of moving asymptotes [29] or
interior point methods [30].

The use of continuous variables, for instance in range 0 to
1, requires the use of an interpolation function for the material
properties (elastic modulus, density, piezoelectric coefficient,
permittivity) that drives the solution to a binary outcome. The
existence of intermediate values for the design variables pre-
vent the fabrication of the structure. The standard interpolation
method is the solid isotropic material with penalization (SIMP)
method [31] that uses a power law to penalize material proper-
ties. The exponents of the power law are heuristically chosen
to drive the optimization algorithm to a binary solution. Fur-
thermore in dynamic problems, the selected interpolation must
avoid the formation of local modes in low density portions of
the FE model [32].

A new interpolation approach is introduced in this work to
address the specific requirements of the piezoelectric AFM can-
tilever design problem. The SIMP method is combined with a
formulation that penalizes poorly connected structures. This in-
terpolation method is denoted connectivity and simple isotropic
material with penalization (C-SIMP) in this work. The connec-
tivity penalization uses a recently report method of using Pois-
son’s equation to detect connectivity in a topology optimiza-
tion problem [33, 34]. Penalization using the SIMP method
maximizes the piezoelectric sensor sensitivity and avoids local
modes while the connectivity penalization drives the solution
towards a connected binary structure.

The remainder of this article is outlined as follows. Section 2
formulates the finite element model used to analyze the lami-
nate piezoelectric structure from which the cantilever is formed.
Section 3 outlines the C-SIMP material model which penalizes
disconnected structures and allows the optimization method to
alter the topology. Section 4 introduces a set of structural regu-
lation operations that are applied to the design variables to aid
convergence. Section 5 defines the optimization problem, and
describes the numerical implementation of the algorithm. Sec-
tion 6 presents a set of cantilever designs and discusses their
performance. Appendix A presents the sensitivity analysis re-
quired by the gradient based optimization algorithm.

Figure 1: The piezoelectric AFM cantilever is formed from a laminate structure.
The laminate plate displacements, rotations, and electrical configuration are
shown.

2. Electromechanical Model

The cost function and constraints of the topology optimiza-
tion method are evaluated using modal analysis of a finite el-
ement (FE) model. The model is developed using laminate
plate theory to numerically evaluate the resonant behavior of
the piezoelectric cantilever. The laminate structure based on
the PiezoMUMPS microfabrication process [35], shown in Fig-
ure 1, consists of a silicon device layer with a piezoelectric ce-
ramic and metal layer deposited on top for transduction. Sec-
tion 2.1 introduces the laminate kinematics, electric field distri-
bution, and constitutive equations. These are used to derive en-
ergy expressions as a function of the input voltages and output
displacements. Hamilton’s principle utilizes the energy expres-
sions to derive the dynamic equations of the system. In Sec-
tion 2.2, the FE method is applied to produce a set of ordinary
differential equations for modal analysis.
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Table 1: Material properties and dimensions of the layers of the laminate plate
[43, 44]. The chosen materials and thickness are from the PiezoMUMPs fabri-
cation process [35].

Silicon Piezoelectric Metal
(Si) (AlN) (Al)

Young’s Modulus (GPa) 130 300 70
Poisson Ratio 0.28 0.36 0.33
Thickness (um) 10 0.5 1
Density (kg/m3) 2330 3260 2700
Relative Permittivity N/A 10.2 N/A
Piezoelectric Coeff. (C/m2) N/A 0.58 N/A

2.1. Governing Equations

Numerous investigations into piezoelectric laminate struc-
tures employ first-order shear deformation theory (FSDT) to
describe the kinematics of the laminate plate [25, 36–39]. The
displacement field of the laminate plate is:

u1(x, y, z) = u0(x, y) + zθy(x, y), (1)
u2(x, y, z) = v0(x, y) − zθx(x, y), (2)
u3(x, y, z) = w0(x, y), (3)

where (u1, u2, u3) is the displacement of an infinitesimal piece
of material in the structure along the (1) x-axis, (2) y-axis, and
(3) z-axis. The laminate displacement parameters are the dis-
placement of the mid-plane (u0, v0,w0) and the rotation of the
normal about the x-axis θx and y-axis θy. The origin of the z-
coordinate is the mid-plane of the laminate plate. The standard
definitions of infinitesimal strain theory relate the displacement
field and strain field [40–42].

A parallel plate capacitive structure is assumed to model the
electric field distribution in the piezoelectric layer, which is
poled along the z-axis. The silicon and metal layer are con-
sidered perfect conductors and the electric field is zero in these
layers. The electric field is applied along the z-axis. The poten-
tial difference across the piezoelectric layer is vL. The electric
field distribution is:

E3 = −
vL

hL
, (4)

where hL is the thickness of the piezoelectric layer. There is
a charge QL distributed on the top surface of the piezoelectric
layer associated with the voltage vL and the stress in the piezo-
electric structure.

The piezoelectric material is modeled by the following con-
stituent equations [40–42]:

T = cS − eT E, (5)
D = eS + εE. (6)

c is the elastic modulus matrix, e are the piezoelectric coeffi-
cient matrix, and ε is the permittivity matrix. The vectors are
the stress T , strain S , electric field E, and electric displacement
D. FSDT assumes S 3 = T3 = 0, and poling along the axis
three makes D1 = D2 = E1 = E2 = 0 [40–42]. The reduced

constitutive equations used for the layers in the laminate plate
are: 

T1
T2
T4
T5
T6

 =


c11 c12 0 0 0
c12 c11 0 0 0
0 0 c44 0 0
0 0 0 c44 0
0 0 0 0 c66



S 1
S 2
S 4
S 5
S 6

 −

e31
e32
0
0
0

 E3, (7)

D3 =
[
e31 e32 0 0 0

]

S 1
S 2
S 4
S 5
S 6

 + ε33E3, (8)

where:

c11 =
Y

1 − ν̃2 , (9)

c12 =
Y ν̃

1 − ν̃2 , (10)

c44 =
κY

2(1 + ν̃)
, (11)

c66 =
Y

2(1 + ν̃)
. (12)

Y is Young’s modulus, ν̃ is Poisson’s ratio, and κ = π2/12 is
a correction factor. It is assumed the material is homogeneous
which implies e31 = e32. Material properties of the layers of the
laminate plate are listed in Table 1. Non-piezoelectric materials
are modeled with the piezoelectric coefficient set to zero.

Hamilton’s principle is a fundamental physical principle that
is able to facilitate the reduction in order of the dynamic equa-
tions of a physical system. For an elastic system subjected to
conservative forces and charges, Hamilton’s principle is math-
ematically stated as [40–42]:

δ

∫ t2

t1
T −H −V dt = 0, (13)

where δ is the variational operator, T is the kinetic energy of the
system,H is the enthalpy of the system, andV is the potential
energy of the applied forces and charges. In this optimization
formulation, only charges applied to the piezoelectric layer are
considered. The energies are:

T =
1
2

∫
Ω

ρ
(
u̇2

1 + u̇2
2 + u̇2

3

)
dΩ, (14)

H =
1
2

∫
Ω

T T S − DT E dΩ. (15)

V =

∫
Ω

ρqv dΩ, (16)

where ρ is the material density, and Ω is the domain of the struc-
ture, ρq is the charge density, and v is the voltage.

To develop a model using Hamilton’s principle, the kinetic
energy, enthalpy, and charge potential energy must be param-
eterized in terms of the input parameters (the applied volt-
ages/charges) and the unknown outputs (the laminate displace-
ment field). Then, Equation (13) is evaluated for the differential
equations of the system.
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Figure 2: The domain of the structure is discretized into a set of rectangular
elements with a node in each corner. Twenty degrees-of-freedom, five at each
node, parameterize the mechanical motion of the element. A single electrical
DOF parameterizes the voltage across the piezoelectric layer.

2.2. Finite Element Discretization
The finite element model utilizes rectangular four node ele-

ments. The laminate displacement field uL = [u0, v0,w0, θx, θy]T

and the voltage across the piezoelectric layer vL are parameter-
ized by a set of degrees-of-freedom (DOFs). The 20 mechanical
DOFs, shown in Figure 2, are:

ue = [u(1)
0 , v(1)

0 ,w(1)
0 , θ(1)

x , θ(1)
y , . . . , u(4)

0 , v(4)
0 ,w(4)

0 , θ(4)
x , θ(4)

y ], (17)

and ve is the electrical DOF. The mapping from (ue, ve) to
(uL, vL) is:

uL = Nuue, (18)
vL = ve, (19)

where Nu is a matrix of standard bilinear interpolation functions
for rectangular four node elements [45]. The mapping from the
DOFs (ue, ve) to the full displacement field u = [u1, u2, u3]T ,
the strain field S = [S 1, S 2, S 4, S 5, S 6]T , and the electric field
E are:

u = Buue, (20)
S = BS ue, (21)
E = −BEve, (22)

where the mechanical DOFs to displacement matrix Bu is
derived from combining Equations (18) and (19) and Equa-
tions (1) to (3), the mechanical DOFs to strain matrix Bs is
formed from partial derivatives of Bu [40–42], and the elec-
trical DOF to electric field matrix BE is derived from a com-
bination of Equations (4), (18) and (19). The expressions in
Equations (20) to (22) are substituted into the formulas for the
kinetic energy (Equation (14)) and enthalpy (Equation (15)) for
the evaluation of Hamilton’s principle. To evaluate the poten-
tial energy of the externally applied charge, a charge Qe is ap-
plied to the piezoelectric layer at voltage ve. The evaluation of

Hamilton’s principle in Equation (13) and the assembly of the
complete finite element model yields:[

Muu

0

]
ü +

[
Kuu Kuv

−KT
uv Kvv

] [
u
vL

]
=

[
0

QL

]
, (23)

where u is the complete set of mechanical DOFs, vL = ve as
there is only one electrical DOF in the entire system, and QL

is the sum of charges from all elements. The mass matrix Muu,
stiffness matrix Kuu, piezoelectric matrix Kuv, and capacitance
matrix Kvv are formed with assembly of the element matrices
[23]:

Ke
uu =

∫
Ωe

BT
S cBS dΩ, (24)

Ke
uv =

∫
Ωe

BT
S eBE dΩ, (25)

Ke
vv =

∫
Ωe

BT
EεBE dΩ, (26)

Me
uu =

∫
Ωe

ρBT
u Bu dΩ. (27)

Assuming a harmonic solution for the displacement u =

φ cos(ωt) and no applied voltage, which is the case when instru-
menting the cantilever with a charge amplifier, the differential
equation is solved with an eigenvalue problem:

(λMuu − Kuu) φ = 0, (28)

where λ = ω2 is the eigenvalue and φ is the eigenvector, re-
ferred to as the mode shape in this work. Solutions exist for
a countably infinite set of eigenvalues. This work focuses on
the first mode, that is the solution with the lowest eigenvalue
λ1 and its associated mode shape φ1. The optimization prob-
lem utilizes the solution to the eigenvalue problem and the FE
element model matrices in Equation (23) to compute the cost
function and constraints.

3. C-SIMP Material Model

To alter the FE model and the topology, a parameter for each
element, denoted the pseudo-density ρ̄i ∈ [0, 1], parameterizes
the structure. A value of 0 indicates a void element and a value
of 1 indicates a solid element. To facilitate continuous opti-
mization variables, the pseudo-densities vary in the range 0 to
1. A continuous material model defines the material properties
of the element for an intermediate value of the pseudo-density.
This work defines an extension to the SIMP material model de-
noted connectivity and SIMP (C-SIMP). The material model is:

ci = exp(−qeµi)ρ̄
pe

i c0, (29)

ei = exp(−qpµi)ρ̄
pp

i e0, (30)
εi = exp(−qcµi)ρ̄

pc
i ε0, (31)

ρi = exp(−qdµe)ρ̄ pd
i ρ0. (32)

The material properties of the ith element are: the elastic mod-
ulus matrix ci, the piezoelectric coefficient matrix ei, is the per-
mittivity matrix εi, and the density ρi. (c0, e0, ε0, ρ0) are the
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Figure 3: In the example shown, connectivity analysis is applied to a structure
with an unconnected section in the the top-left corner. The temperature distri-
bution provides a measure of the connectivity – closer to 0 is more connected
to the boundary.

nominal material properties of a solid element. µi is the connec-
tivity penalty of the element which quantifies how connected
the element is to the base of the cantilever. (pe, pp, pc, pd) are
the SIMP penalization factors and (qe, qp, qc, qd) are the con-
nectivity penalization factors. The penalization factors are used
to tune the implementation to drive the solution to a binary
structure.

The connectivity penalties are evaluated using the virtual
temperature method, previously used to prevent the formation
of voids in a structure during topology optimization [33, 34].
A modification to this method is formulated to penalize uncon-
nected structures. A secondary thermal system is created and
the parameters of the thermal system are tuned by the pseudo-
densities. Solid elements exhibit excellent thermal conductivity
and have a heat source, while void elements exhibit low conduc-
tivity and have no heat source. A thermal boundary exists at the
fixed end of the cantilever. Unconnected sections of the struc-
ture attain a high steady-state temperature in the secondary ther-
mal system. The temperature field across the structure is used to
evaluate the connectivity penalties for each element. Poisson’s
equation describes the behavior of the thermal system:

∇(k∇T ) + q = 0, (33)

where k is the thermal conductivity, T is the temperature, and q
is the heat source. The finite element method is used to evalu-
ate the equation. The thermal system uses the same mesh and
interpolation functions that are used for the electromechanical
system. The temperature field across an element is:

T (x, y) = Nτ(x, y)τi, (34)

where Nτ is a matrix of interpolation functions, and τi are the
four temperature DOFs, one at each node of the rectangular
element. The thermal conductivity and heat source for each
element are a function of the pseudo-density:

ki = kmaxρ̄i + (1 − ρ̄i)kmin, (35)
qi = qmaxρ̄i. (36)

The method of weighted-residuals is used to derive the weak

form of Poisson’s equation. The element matrices are:

Ke
τ = ki

∫
Ωe

∇NT
τ ∇Nτ dΩe, (37)

qe
τ = qi

∫
Ωe

NT
τ dΩe. (38)

These matrices are used to form the fully assembled system:

Kττ = qτ, (39)

where Kτ is the conduction matrix, qτ is the source matrix, and
τ are the temperature DOFs. With four DOFs per element, the
connectivity penalty is taken as the average, that is:

µi = mean(τi), (40)

which is the temperature at the center of the element. Figure 3
shows an example of the connectivity analysis on a binary struc-
ture with an unconnected section. For the evaluation of Equa-
tions (35) and (36), kmax = qmax = 1 and kmin = 0.01. The
temperature distribution from the evaluation of Poisson’s equa-
tion shows a significant magnitude in the temperature metric of
the unconnected section indicating a highly disconnect area in
the topology.

4. Structural Regularization

The pseudo-densities required by the C-SIMP model are
computed by applying structural regularization to the optimiza-
tion design variables. Regularization refers to operations that
drive the design to a realizable structure and minimizes mesh-
dependent issues [46]. In this optimization method, three regu-
larization operators are employed. An operator to enforce sym-
metry, a low-pass filter to eliminate checkerboard patterns, and
a projection operator to penalize intermediate pseudo-densities.
The combined set of operators take xd and return ρ̄ that are used
to assemble the FE model. The effect of the regularization op-
erators is visualized in Figure 4.

Symmetry Operator. To enforce symmetry, elements mirrored
along the axis of the cantilever share the same pseudo-density.
Each pair of mirrored elements is associated with a single de-
sign variable in xd. If the element lies on the axis of the can-
tilever, it is not paired with any other element. The symme-
try operator Gs is a sparse binary non-invertible linear operator
which maps the xd to ρ̄a. While non-invertible, an approximate
inverse operator is defined by taking the average pseudo-density
of each pair of mirrored elements to return the design variable:

xd = αsGT
s ρ̄a, (41)

where αs is a diagonal matrix whose diagonal terms are 0.5 if
the design variable is associated with a pair of elements, and 1
if the design variable is associated with a single element on the
axis of the cantilever. The inverse operator is used to create the
initial design parameters for the optimization method.
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(a) (b)

(c) (d)

Figure 4: The effects of structural regularization. In this example, the regular-
ization is applied to a checkerboard-like structure (a) in a 5x5 element design
space. Black is a solid element, white is a void element, and gray is an in-
termediate element. (b) The symmetry operator mirrors the structure in the
second half of the design space. (c) The density filter eliminates the infea-
sible checkerboard pattern, however, it creates intermediate pseudo-densities.
(d) The projection operator moves intermediate pseudo-densities back towards
solid.

Density Filter. Next the pseudo-densities from the symmetry
operator are filtered. Filtering of the densities encourages struc-
tural connectivity and prevents the formation of checkerboard
patterns in the structure. The density filter employed in this
work is given by [23, 46–48]:

ρ̄b, j =
1∑

i∈N j
H ji

∑
i∈N j

H jiρ̄a,i, (42)

where H ji are the filter coefficients and N j is the set of elements
neighboring element j. The coefficients H ji are defined as:

H ji = rmin − ∆( j, i), (43)

where rmin is a parameter denoted the filter radius, and ∆( j, i)
is the distance between element i and element j. The set of
neighboring elements to the element j is defined as:

N j = {i : rmin − ∆( j, i) > 0} (44)

The filter is a linear operator and its matrix form Gd is sparse for
small rmin. An undesirable side-effect of the the density filter is
that it tends to produce intermediate pseudo-densities along the
edge of the structure.

Projection. The issue of intermediate pseudo-densities pro-
duced by the density filter is alleviated with the projection oper-
ator. It is a diagonal non-linear operator that skews intermediate

pseudo-densities towards solid. While a step function would be
ideal, the operator needs to be differentiable for the optimiza-
tion algorithm to be well-defined. A smoothed version of the
step function is used:

ρ̄ = 1 − exp(−βρ̄b) + ρ̄b exp(−β), (45)

where β tunes the steepness of the function.

5. Optimization Strategy

5.1. Problem Definition

The electromechanical-model, C-SIMP material model, and
structural regularization introduced in previous sections are uti-
lized for an optimal electro-mechanical design of a piezoelec-
tric AFM cantilever. The aim is to produce a cantilever with
maximum sensor sensitivity, that is charge produced for unit
of tip displacement (Cm−1), at the first resonance frequency.
Constraints on the stiffness and frequency are required to make
the optimization problem well defined. Stiffer cantilevers stress
the piezoelectric ceramic more producing more charge for the
same displacement, therefore an upper bound on the stiffness
is required to prevent extremely stiff cantilevers from forming.
Large low frequency cantilevers with greater amounts of piezo-
electric ceramic can produce more charge, therefore a lower
bound on frequency is required to prevent extremely low fre-
quency cantilevers from forming. As such the optimization
problem is defined as:

min − η1, (46)
s.t. k1 < k0, (47)

f1 > f0, (48)

where η1 is the sensor sensitivity of the first mode, k1 is the dy-
namic stiffness of the first mode, f1 is the resonance frequency
of the first mode, k0 is an upper bound on the stiffness, and f0
is a lower bound on the resonance frequency. The objective
function is:

−η1 =
KT

uvφ1

Guuφ1
, (49)

where Guu is a linear operator that returns the displacement at
the tip of the cantilever. The numerator of Equation (49) is the
charge produced by the piezoelectric ceramic and the denomi-
nator is the deflection of the tip. The dynamic stiffness of the
cantilever is:

k1 =
φT

1 Kuuφ1

(Guuφ1)2 , (50)

and the resonance frequency of the first mode is:

f1 =

√
λ1

2π
. (51)

5.2. Implementation

The diagram of the software architecture of the topology op-
timization method is shown in Figure 5. The interior point
method using the IPOPT library [30] is employed to solve the
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Figure 5: The software architecture of the topology optimization method to
design the piezoelectric AFM cantilever.

Table 2: The C-SIMP penalization factors employed to drive the solution to a
binary structure.

pe pp pd pd qe qp qc qd

1 5 0 3 0 0.3 0 0

(a) (b)

Figure 6: (a) The design space in which the piezoelectric AFM cantilever is
formed. The dimensions, the FE mesh, tip location, and exclusion zones are
indicated. (b) The initial cantilever design used to initialize the IPOPT opti-
mization algorithm. Units are in µm.

topology optimization problem. The execution of the IPOPT
algorithm produces xd which is transformed to ρ̄ with structural
regularization, outlined in Section 4. With the pseudo-densities,
the connectivity penalization is evaluated and then the piezo-
electric FE model is assembled. Finally the objective and con-
straints are evaluated using the FE model. The size and shape
of the initial finite element model defines the size of the design
space in which the cantilever can form. Furthermore, sensitivity
analysis, that is the computation of the gradients of the objec-
tive and constraints, is required for the interior point method.
Sensitivity analysis is outlined in Appendix Appendix A. The
steps of the algorithm are:

1. Initialize the operators used in the finite element analysis,
sensitivity analysis, structural regularization, and connec-
tivity penalization.

2. From the pseudo-densities of an initial binary structure use
Equation (41) to compute an initial xd.

Repeat:
3. Execute a step of the IPOPT optimization algorithm to up-

date the xd.
4. Calculate ρ̄ using structural regularization.
5. Assemble the secondary thermal system to evaluate the

connectivity penalties µ.
6. Assemble piezoelectric FE model using the C-SIMP ma-

terial model for the mass, stiffness, piezoelectric, and ca-
pacitance matrices (Muu,Kuu,Kuv,Kvv).

7. Perform modal analysis and compute the objective and
constraints.

8. Calculate the sensitivity of the objective function and con-
straints with respect to xd.

Terminate:
9. When the percentage change in the objective is small re-

turn solution.

The penalization factors employed in this method are listed
in Table 2. Heavy penalization on the piezoelectric coefficient
via (pp, qp) is used due to the direct dependence of the objective
function on the piezoelectric matrix Kuv. With the constraint on
frequency indirectly constraining the amount of mass present,
the optimization algorithm finds greater efficiency in using fully
solid elements to maximize the sensor sensitivity. The density
is penalized heavier than the elasticity to keep void parts of the
structure stiff and light during optimization. This prevents the
formation of low frequency local modes which masks the true
first mode of the cantilever in modal analysis [32].

6. Results and Discussion

6.1. Comparison with Rectangular Solutions

To examine the performance of the topology optimization
method, a set of cantilevers are designed with various stiffness
constraints k0 and frequency constraints f0. To summarize, the
objective of the topology optimization method is to maximize
the sensor sensitivity η1 with a upper bound on the cantilever

7



Stiffness Constraint k0 = 40 N/m

(a) (b) f0 = 40 kHz (c) f0 = 50 kHz (d) f0 = 60 kHz

(e)

Stiffness Constraint k0 = 60 N/m

(f) (g) f0 = 40 kHz (h) f0 = 50 kHz (i) f0 = 60 kHz

(j)

Stiffness Constraint k0 = 80 N/m

(k) (l) f0 = 40 kHz (m) f0=50kHz (n) f0 = 60 kHz

(o)

Stiffness Constraint k0 = 100 N/m

(p) (q) f0 = 40 kHz (r) f0 = 50 kHz (s) f0 = 60 kHz

(t)

Figure 7: The cantilevers are grouped by stiffness constraint k0. (b-d,g-i,l-n,q-s) Are the topology of the optimized cantilever designs. (a,f,k,p) Are optimized
rectangular cantilevers under a stiffness constraint. (e,j,o,t) Show the frequency and sensitivity of each design.

stiffness k1 < k0 and a lower bound on the resonance frequency
f1 > f0.

The optimized cantilevers are formed in a design space
250 µm wide and 500 µm long, discretized into 6.25 µm by
12.5 µm elements as shown in Figure 6(a). Rectangular sections
of 62.5 µm wide by 125 µm are removed from the upper right
and left corner of the design space. This is a heuristic that was
found to minimize the likelihood of a torsional mode becoming
the lowest frequency mode and disrupting the execution of the
topology optimization method. The mode shapes are normal-
ized to the displacement at the tip which lies on the cantilever
axis and half an element length from the edge of the design

space. The first mode of a cantilever filling this entire design
space has a stiffness of 109.9 N m−1, a frequency of 69.27 kHz,
and a sensitivity of 1.12 µC/m.

A rectangular cantilever, shown in Figure 6(b), is used as
the initial condition of the optimization problem. This can-
tilever has a mode 1 resonance frequency of 55.5 kHz, mode
1 dynamic stiffness of 54.13 N/m, and a sensor sensitivity of
0.547 µC/m.

Figure 7 shows the set of cantilevers that was produced by the
topology optimization method, along with a set of rectangular
reference cantilevers.

In all figures presenting the cantilevers, black indicates a
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solid element, white a void element, and gray an intermediate
element. Cantilever dimensions are in µm, and the fixed bound-
ary is along the bottom edge of the figure. The constraints on
each cantilever are permutations of a frequency constraint of
f0 = (40 kHz, 50 kHz, 60 kHz) and a stiffness constraint of k0
= (40 N/m, 60 N/m, 80 N/m, 100 N/m). The rectangular can-
tilevers have a fixed 500 µm length, and the width is the design
parameter. The rectangular designs are optimized without a fre-
quency constraint.

The first conclusion is that there is a strong correlation be-
tween the dynamic stiffness of the cantilevers and the sensor
sensitivity. The stiffer cantilevers stress the piezoelectric ce-
ramic more for the same displacement producing more charge.
For all cantilever solutions, the stiffness of the cantilever in-
creases until it hits the stiffness constraint of the optimization
problem. As cantilevers with the same stiffness constraint k0
attain the same dynamic stiffness, cantilevers are grouped for
comparison by stiffness in Figure 7.

As the dynamic stiffness approaches the constraint, the topol-
ogy optimization method continues to add mass in areas where
the stress is small. This additional mass contributes insignif-
icantly to the dynamic stiffness but adds a small amount of
charge thereby reducing the objective function. The addition
of extra mass reduces the resonance frequency, thus justify-
ing the frequency constraint. In addition, this process results
in wing-like structures appearing off the side of the main can-
tilever structure. These wings tend to lower the frequency of
torsional modes, especially if the they are at the tip of the struc-
ture. The elimination of these wing-like structures motivates re-
stricting the design space near the tip of the cantilever as shown
in Figure 6(a).

When the designs are benchmarked against the reference
rectangular cantilevers having the same stiffness constraint and
same length, the charge sensitivities of the optimized designs
are less than that of rectangular reference cantilevers. Hence
from a charge sensitivity maximization perspective, the opti-
mization method does not lead to improvements. This also
suggests that the problem is non-convex as optimization prob-
lem does not converge towards the more optimal rectangular
designs. However, with respect to the resonance frequency of
the designs, the optimized cantilevers have higher frequencies
which is desirable for high speed AFM imaging. The rectan-
gular cantilevers all have a frequency of approximately 55 kHz
while the optimized cantilevers with stiffness constraint greater
than 60 N/m all had higher frequencies with the highest fre-
quency attained being 73 kHz.

6.2. The Effect of the Connectivity Penalization
Connectivity penalization significantly reduces the chance of

an infeasible solution due to the presence of unconnected sec-
tions of the structure. Examining the set of cantilevers designed
with no connectivity penalization in Figure 8, six cantilevers
exhibited unconnected structural sections. In contrast, there is
only one unconnected structure in the set with connectivity pe-
nalization in Figure 7. Connectivity issues are more likely to
occur for solutions for higher frequency constraints f0 or lower
stiffness constraints k0.

f 0
=

40
kH

z
f 0
=

50
kH

z
f 0
=

60
kH

z

No Connectivity Penalization
k0 = 40 N/m k0 = 60 N/m k0 = 80 N/m k0 = 100 N/m

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8: (a-l) These cantilevers are designed without connectivity penalization.
Unconnected structural elements are circled in red.

Examining the one unconnected solution (Figure 7(d)) with
connectivity penalization, it is the cantilever designed under the
strictest frequency and stiffness constraints ( f0 = 60 kHz, k0 =

40 N/m). When the constraints are too strict, the optimization
algorithm justifies some connectivity violation. The amount of
connectivity violation an optimal solution allows is tuned by the
connectivity penalization factors (qe, qp, qc, qd).

The unconnected sections in the results in Figure 8 tend to be
small and could be manually removed. This manual process,
which may not be applicable to other topology optimization
problems, is avoided when using the C-SIMP material model.

6.3. The Effect of the Design Space Dimensions

It was found that the chosen design space limited the possible
range of stiffness constraints that could be applied in the topol-
ogy optimization method. The upper limit of the stiffness tends
to be a function of the dimensions of the design space. Rais-
ing the stiffness constraint leads to more of the design space
being filed with more solid elements. There would be a con-
straint value in which the entire design space becomes solid.
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Wider Design Space

(a) f0 = 40 kHz (b) f0 = 50 kHz (c) f0 = 60 kHz

(d)

Figure 9: (a-c) Optimized cantilevers with a wider design space for a stiffness
constraint of k0 = 100 N/m. (d) Shows the frequency and sensitivities of these
designs, and those in Figure 7(p-s).

Longer Design Space

(a) f0 = 40 kHz (b) f0 = 50 kHz (c) f0 = 60 kHz

(d)

Figure 10: (a-c) Optimized cantilevers with a longer design space with stiffness
constraint k0 = 40 N/m. (d) Compares the frequency and stiffness of these
designs to those in Figure 7(a-c).

Lower values in dynamic stiffness lead to connectivity issues.
The range of possible dynamic stiffnesses that can be attained
is set by altering the design space.

To examine the effect of altering the design space, the can-
tilevers in Figure 9 are solutions with stiffness k0 = 100 N/m for
a design space width of 500 µm. Compared to the cantilevers
formed in the 250 µm wide design space in Figure 7, an im-
provement in performance for the cantilevers with the 500 µm
wide design space. With the wider design space, more of the
mass of the cantilever was distributed towards the base of the
cantilever leading to a marginally higher resonance frequency
and an increase in sensor sensitivity is attained. In addition,
there is a significant improvement over the rectangular refer-
ences cantilevers in Figure 7(p). This suggests a search over the
design space dimensions is also required to find more optimal
solutions. Setting the width such that the optimized topology
isn’t constrained would eliminate this effect. However, increas-
ing the width of the design space increases the computation
time due to the additional elements added to the design space.

The effect of the length of the design space was explored for
optimization problems with a low stiffness constraint. Longer
cantilevers are generally softer therefore lower stiffness con-
straints should be easier to satisfy. The design problems for
the cantilevers with k0 = 40 N/m were re-executed with the
length of the design space increased from 500 µm to 600 µm.
The results are shown in Figure 10. The longer design space
eliminates the connectivity issues at the expense of lower fre-
quency cantilevers. In addition, the longer cantilevers have
higher charge sensitivities than the shorter cantilevers with the
same stiffness constraints. The increase in the design space
length leads to a reduction in frequency and an increase in sen-
sor sensitivity while the stiffness k1 attains equality to the stiff-
ness constraint k0. This suggests that the optimal cantilever is
one where f0 = f1 and k0 = k1. To attain this solution the
topology optimization method present in this work needs to be
modified to eliminate the dependence of the fixed design space
from the solution.

7. Conclusions

Topology optimization has addressed a broad range of design
problems. This article builds upon this body of work to address
the specific requirements for the design problem of a piezoelec-
tric cantilever for dynamic mode AFM. In particular, the intro-
duced material model C-SIMP allows for SIMP penalization to
target the minimization of the objective function while the con-
nectivity penalization minimizes connectivity and intermediate
pseudo-density issues. The benefits of this material model was
demonstrated with significantly less unconnected structures be-
tween the two sets of cantilever designs, one without and one
with connectivity penalization.

The presented topology optimization method produced a
number of optimized piezoelectric cantilevers for dynamic
mode AFM. With previous reported topology optimization
methods for AFM cantilevers focusing on optical sensing, the
piezoelectric sensing focus of this method provides a new av-
enue for the application of topology optimization to AFM. The
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results presented in this work suggest that modest improve-
ments in either sensor sensitivity or resonance frequency can
be achieved with more arbitrary cantilever topologies compared
to rectangular topologies. A major constraint in the current
method is the constraining effect of the design space dimen-
sions. In particular the tip location, the point at which mode
shapes are normalized, is fixed within the design space. An ex-
tension that facilitates a variable tip location or cantilever length
would provide greater flexibility to search for an optimal solu-
tion.

With only modest improvements attained and the limitations
of the design space, the value of this design method appears less
in the presented results and more in the potential to provide a
basis to develop alternative topology optimization solutions for
dynamic piezoelectric devices. With the presented piezoelectric
modeling, dynamic analysis, C-SIMP material model and other
implementation details, this method shall be extended for the
design of cantilevers for multi-frequency AFM where the com-
plex interaction between the topology and multiple structural
are beyond intuitive electro-mechanical design.
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Appendix A. Sensitivity Analysis

The topology optimization problem is solved using an inte-
rior point method [30] which requires the gradient of the ob-
jective function and the constraints. Let h1 be the objective
function, h2 be the stiffness constraint, and h3 be the frequency
constraint:

h1(xd) = KT
uvφ1 (Guuφ1)−1 , (A.1)

h2(xd) = φT
1 Kuuφ1 (Guuφ1)−2 , (A.2)

h3(xd) =
√
λ1 (2π)−1 . (A.3)

The computation of the objective and constraints is split into
two steps. First structural regularization maps xd to ρ̄, and
second the pseudo-densities form a FE model from which the
charge sensitivity, stiffness, and frequency values are computed.
Lets represent any of h1, h2, or h3 by the function h. The gradi-
ent of h is then expressed by the chain rule:

dh
dxd

=
dh
dρ̄

dρ̄
dxd

. (A.4)

The two RHS terms of Equation (A.4) are derived indepen-
dently. The subsequent subsections derive the gradient of the
regularization operators in Appendix Appendix A.1, the ob-
jective in Appendix Appendix A.2, the constraints in Ap-
pendix Appendix A.3, and the FE matrices in Appendix Ap-
pendix A.4.

Appendix A.1. Gradient of Regularization Operators

The structural regularization is composed of three operators:
the symmetry operator Gs, the density filter Gd, and the pro-
jection operator hp(). The regularization process be expressed

as:

ρ̄a = Gsxd, (A.5)
ρ̄b = Gdρ̄b, (A.6)
ρ̄ = hp(ρ̄b). (A.7)

Being linear, the gradient of the symmetry operator and density
filter operator are constant, that is:

dρ̄b

dρ̄a
= Gd, (A.8)

dρ̄a

dxd
= Gs. (A.9)

The projection operator is non-linear and diagonal. The gra-
dient of the projection operator needs to be evaluated for each
solution at ρ̄b. The gradient of the projection operator is:

dρ̄
dρ̄b

=
dhp

dρ̄b
(ρ̄b) = diag

[
β exp(−βρ̄b) + exp(−β)

]
. (A.10)

The gradients of the regularization operators are combined us-
ing the chain rule:

dρ̄
dxd

=
dρ̄
dρ̄b

dρ̄b

dρ̄a

dρ̄a

dxd
. (A.11)

Appendix A.2. Gradient of the Objective Using the Adjoint
Method

The evaluation of an eigenvalue problem to compute the
objective renders the sensitivity analysis non-trivial. The ad-
joint method is used to evaluate the gradient of the objec-
tive [34, 49, 50]. The sensitivity analysis using the adjoint
method considers the objective h1, the eigenvalue problem g1,
the eigenvector normalization g2, and the secondary thermal
system g3:

h1(λ, φ, ρ̄, τ) = KT
uvφ (Guuφ)−1 , (A.12)

g1(λ, φ, ρ̄, τ) = (Kuu − λMuu) φ = 0, (A.13)

g2(λ, φ, ρ̄, τ) = 1 − φT Muuφ = 0, (A.14)
g3(λ, φ, ρ̄, τ) = Kττ − qτ = 0. (A.15)

Consider the following Lagrangian function comprised of a lin-
ear combination of h1, g1, g2, and g3:

L = h1(λ, φ, ρ̄, τ) + αT g1(λ, φ, ρ̄, τ)

+ βg2(λ, φ, ρ̄, τ) + γT g3(λ, φ, ρ̄, τ),
(A.16)

where α, β, and γ are the adjoint variables. The second, third
and fourth terms in Equation (A.16) always evaluate to zero for
an eigenvalue, eigenvector, and temperature field of the system.
In this case, the Lagrangian function is equal to the objective.
Thus the derivative of the Lagrangian is equal to the derivative
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of the objective:

dh1

dρ̄
=

(
∂h1

∂φ
+ αT ∂g1

∂φ
+ β

∂g2

∂φ
+ γT ∂g3

∂φ

)
∂φ

∂ρ̄

+

(
∂h1

∂λ
+ αT ∂g1

∂λ
+ β

∂g2

∂λ
+ γT ∂g3

∂λ

)
∂λ

∂ρ̄

+

(
∂h1

∂τ
+ αT ∂g1

∂τ
+ β

∂g2

∂τ
+ γT ∂g3

∂τ

)
∂τ

∂ρ̄

+
∂h1

∂ρ̄
+ αT ∂g1

∂ρ̄
+ β

∂g2

∂ρ̄
+ γT ∂g3

∂ρ̄
.

(A.17)

The adjoint variables α, β and γ are found to make the terms in
Equation (A.17) containing ∂φ

∂ρ̄
, ∂λ
∂ρ̄

, and ∂τ
∂ρ̄

vanish:

dh1

dρ̄
=
∂h1

∂ρ̄
+ αT ∂g1

∂ρ̄
+ β

∂g2

∂ρ̄
+ γT ∂g3

∂ρ̄
, (A.18)

=
∂h1

∂ρ̄
+ αT

(
∂Kuu

∂ρ̄
− λ

∂Muu

∂ρ̄

)
φ

− βφT ∂Muu

∂ρ̄
φ + γT

(
∂Kτ

∂ρ̄
τ −

∂qτ
∂ρ̄

)
.

(A.19)

The derivatives of the FE matrices are analyzed in Ap-
pendix Appendix A.4. The terms in Equation (A.17) contain-
ing ∂φ

∂ρ̄
, ∂λ
∂ρ̄

, and ∂τ
∂ρ̄

vanish for adjoint variables evaluated from
the adjoint equations:Kuu − λMuu −2Muuφ 0

−φT Muu 0 0
0 0 Kτ


αβ
γ

 =


−
∂h1
∂φ

T

−
∂h1
∂λ

T

−
∂h1
∂τ

T

 . (A.20)

For the objective employed in this work, the partial derivatives
of h1(λ, φ, ρ, µ) are:

∂h1

∂ρ̄
=
∂KT

uv

∂ρ̄
φ (Guuφ)−1 , (A.21)

∂h1

∂φ
=

(
KT

uv(Guuφ) −Guu(KT
uvφ)

)
(Guuφ)−2 , (A.22)

∂h1

∂λ
= 0, (A.23)

∂h1

∂τ
=
∂KT

uv

∂µ
φ (Guuφ)−1 Gτ. (A.24)

Gτ is a linear operator that maps τ to µ. Its action is described
by Equation (40). Considering the analysis presented in this
section, the process of evaluating the gradient of the objective
is:

1. Build the sparse linear system in Equation (A.20).
2. Solve for the adjoint variables using an iterative algorithm

for sparse systems.
3. Evaluate the Equation (A.19) for the gradient of the objec-

tive.

Appendix A.3. Gradient of the Constraints
The adjoint method is used to evaluate the gradient of

the stiffness and frequency constraint. The analysis of Ap-
pendix Appendix A.2 is used to derive the gradient with stiff-
ness constraint h2:

h2(λ, φ, ρ̄, τ) = φT Kuuφ (Guuφ)−2 . (A.25)

The differences in the analysis result from the evaluation of the
partial derivatives of h2:

∂h2

∂ρ̄
= φT ∂Kuu

∂ρ̄
φ (Guuφ)−2 , (A.26)

∂h2

∂φ
= 2φT Kuu (Guuφ)−2 − 2k1Guu (Guuφ)−1 , (A.27)

∂h2

∂λ
= 0, (A.28)

∂h2

∂τ
= φT ∂Kuu

∂µ
φ (Guuφ)−2 Gτ. (A.29)

With these partial derivatives, Equation (A.20) is constructed
and solved then Equation (A.19) is evaluated, with h2 sub-
stituted for h1. For the frequency constraint h3(λ, φ, ρ̄, τ) =√
λ/2π, the partial derivatives are:

∂h3

∂ρ̄
=
∂h3

∂φ
=
∂h3

∂τ
= 0, (A.30)

∂h3

∂λ
=

1

4φ
√
λ
. (A.31)

Appendix A.4. Gradients of the Finite Element Matrices

Every element in the electromechanical model has identical
material properties prior to the penalization. The penalization
of the material properties from the C-SIMP material model is
applied during the the assembly of the FE matrices as follows:

Kuu =
∑

i

e−qeµi ρ̄
pe

i assemi(Ke
uu), (A.32)

Kuv =
∑

i

e−qpµi ρ̄
pp

i assemi(Ke
uv), (A.33)

Kvv =
∑

i

e−qcµi ρ̄
pc

i assemi(Ke
vv), (A.34)

Muu =
∑

i

e−qdµi ρ̄
pd

i assemi(Me
uu), (A.35)

where the summation is over all elements in the FE model.
The FE matrices are a linear combination of constant matri-
ces. The coefficients of the linear combination are a function of
the pseudo-densities and connectivity penalties. The derivatives
with respect to the ith pseudo-density and connectivity penalty,
for example with Kuu, are:

∂Kuu

∂ρ̄i
= pe exp(−qeµi)ρ̄

pe−1
i assemi(Ke

uu), (A.36)

∂Kuu

∂µi
= −qe exp(−qeµi)ρ̄

pe
i assemi(Ke

uu). (A.37)

Similar expression are derived for the other FE matrices.
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